AMolecular Mechanics Study of Morphologic Interaction between Graphene and Si Nanowires on a SiO2 Substrate

نویسندگان

  • Zhao Zhang
  • Teng Li
چکیده

We study the morphologic interaction between graphene and Si nanowires on a SiO2 substrate, using molecular mechanics simulations. Two cases are considered: (1) a graphene nanoribbon intercalated by a single Si nanowire on a SiO2 substrate and (2) a blanket graphene flake intercalated by an array of Si nanowires evenly patterned in parallel on a SiO2 substrate. Various graphene morphologies emerge from the simulation results of these two cases, which are shown to depend on both geometric parameters (e.g., graphene nanoribbon width, nanowire diameter, and nanowire spacing) and material properties (e.g., graphene-nanowire and graphene-substrate bonding strength). While the quantitative results at the atomistic resolution in this study can be further used to determine the change of electronic properties of graphene under morphologic regulation, the qualitative understandings from this study can be extended to help exploring graphene morphology in other material systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of ribbon width on electrical transport properties of graphene nanoribbons

There has been growing interest in developing nanoelectronic devices based on graphene because of its superior electrical properties. In particular, patterning graphene into a nanoribbon can open a bandgap that can be tuned by changing the ribbon width, imparting semiconducting properties. In this study, we report the effect of ribbon width on electrical transport properties of graphene nanorib...

متن کامل

Transfer free graphene growth on SiO2 substrate at 250 °C

Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene ...

متن کامل

pH driven addressing of silicon nanowires onto Si3N4/SiO2 micro-patterned surfaces.

pH was used as the main driving parameter for specifically immobilizing silicon nanowires onto Si3N4 microsquares at the surface of a SiO2 substrate. Different pH values of the coating aqueous solution enabled to experimentally distribute nanowires between silicon nitride and silicon dioxide: at pH 3 nanowires were mainly anchored on Si3N4; they were evenly distributed between SiO2 and Si3N4 at...

متن کامل

Study on Sunitinib Adsorption on Graphene Surface as an Anticancer Drug

In recent years, Nano technology and its application have moved to discovering chemicaltherapy drugs. Research, development for finding new targets in tumors, targeting methodsand stabilizing the nano particle in targeted cells is based on drug delivery and its crucialeffect. Examining the computational controlled drug delivery by graphene sheets has becomevery significant due to numerous side ...

متن کامل

Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing

Articles you may be interested in Publisher's Note: " Intrinsic device-to-device variation in graphene field-effect transistors on a Si/SiO2 substrate as a platform for discriminative gas sensing " [Appl. pH sensing properties of graphene solution-gated field-effect transistors Detection of sulfur dioxide gas with graphene field effect transistor Appl. Probing transconductance spatial variation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010